Potassium conductance in Müller cells of fish.
نویسنده
چکیده
The distribution of potassium conductance across the surface of retinal glial (Müller) cells was determined in three species of fishes: two teleosts, the goldfish (Carassius auratus) and the alewife (Alosa pseudoharengus), and an elasmobranch, the spiny dogfish (Squalus acanthias). Potassium conductance was measured by monitoring cell depolarizations evoked by focal ejections of a 15 mEq/L K+ solution onto the surface of freshly dissociated cells. The K+ conductance distributions observed in these three species resembled those found previously in other animals with avascular retinas. In both alewife and dogfish, K+ conductance was highest in the endfoot; K+ conductance in the distal half of these cells ranged from 7.0 to 22.9% of the endfoot conductance. In goldfish, in contrast, K+ conductance was highest in the proximal region of the proximal process (114% of the endfoot conductance). As in the two other species, however, K+ conductance in goldfish was low in the distal half of the cell (7.6 to 40.1% of endfoot conductance). Mean input resistance values of isolated cells were as follows: goldfish, 12.5 M omega; alewife, 26.4 M omega; dogfish, 38.0 M omega. The high resistance of dogfish Müller cells lacking their endfeet (749 M omega) indicates that 95% of the cell membrane conductance is located in or near the endfoot in this species.
منابع مشابه
Distribution of potassium conductance in mammalian Müller (glial) cells: a comparative study.
The distribution of K+ conductance across the surface of retinal Müller cells was determined in 5 mammalian species--rabbit, guinea pig, mouse, owl monkey, and cat--and in tiger salamander. Potassium conductance was measured by monitoring cell depolarizations evoked by focal ejections of a high-K+ solution onto the surface of freshly dissociated cells. This technique measured the total K+ condu...
متن کاملDystrophin Dp71 is critical for the clustered localization of potassium channels in retinal glial cells.
The Müller cell is the principal glial cell of the vertebrate retina. The primary conductance in Müller cells is the inwardly rectifying potassium channel Kir4.1 (BIR10 and KAB-2), which is highly concentrated at the endfeet at the vitreal border and to processes enveloping blood vessels. Such asymmetric and clustered distribution of Kir4.1 channels in Müller cells is thought to be critical for...
متن کاملPotassium conductance block by barium in amphibian Müller cells.
The effect of barium on Müller cell K+ conductance was evaluated in the tiger salamander using enzymatically dissociated cells and cells in situ (retinal slice and isolated retina). Barium effects were similar in both cases. In dissociated cells, 50 microM Ba2+ depolarized cells 14.7 mV and raised cell input resistance from a control value of 16.0 to 133 M omega. For cells in situ, 50 microM Ba...
متن کاملMüller Glial Cells in Retinal Disease
Virtually all pathogenic stimuli activate Müller cells. Reactive Müller cells exert protective and toxic effects on photoreceptors and neurons. They contribute to oxidative stress and glutamate toxicity due to malfunctions of glutamate uptake and glutathione synthesis. Downregulation of potassium conductance disrupts transcellular potassium and water transport, resulting in neuronal hyperexcita...
متن کاملMüller glial cells in retinal disease.
Virtually all pathogenic stimuli activate Müller cells. Reactive Müller cells exert protective and toxic effects on photoreceptors and neurons. They contribute to oxidative stress and glutamate toxicity due to malfunctions of glutamate uptake and glutathione synthesis. Downregulation of potassium conductance disrupts transcellular potassium and water transport, resulting in neuronal hyperexcita...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Glia
دوره 1 4 شماره
صفحات -
تاریخ انتشار 1988